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Abstract

The geometry of Grassmann manifolds GrK (H), of orthogonal projection manifolds PK (H) and of Stiefel bundles St(K ,H)
is reviewed for infinite dimensional Hilbert spaces K and H. Given a loop of projections, we study Hamiltonians whose
evolution generates a geometric phase, i.e. the holonomy of the loop. The simple case of geodesic loops is considered and the
consistence of the geodesic holonomy group is discussed. This group agrees with the entire U (K ) if H is finite dimensional or if
dim(K ) ≤ dim(K ⊥). In the remaining case we show that the holonomy group is contained in the unitary Fredholm group U∞(K )
and that the geodesic holonomy group is dense in U∞(K ).
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1. Introduction

Grassmann manifolds are a classical subject in differential and algebraic topology. The appearance of this topic in
ordinary quantum physics is connected to the study of geometric phases, which are just holonomies of the canonical
connection A on the Stiefel bundle [30,35]. For a review of the argument, see [29] and [5].

The evolution of a quantum system is described in a complex separable Hilbert space H and it is governed by
a curve U (t) of unitary operators generated by a (possibly time-dependent) Hamiltonian. The curve U (t) induces
an evolution on the states of the system represented by the projective space of H, on the subspaces of H and on
their orthonormal frames, and hence on the Grassmann manifolds GrK (H) and on the corresponding Stiefel bundles
St(K ,H). In this paper GrK (H) denotes the manifold of subspaces in H which are isomorphic to a given Hilbert
space K and St(K ,H) denotes the manifold of isometric embeddings of K in H. Of course, isometric embeddings are
identified with orthonormal frames for subspaces in GrK (H), if an orthonormal basis is fixed in K .
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Suppose that a subspace E ∈ GrK (H) undergoes a cyclic evolution for t ∈ [0, T ], i.e. U (T )E = E . At time T ,
every isometric embedding u0 of K in H with image E becomes u(T ) = U (T )u0, where u(T ) is again an isometric
embedding of K in H with image E . There exists a unique operator Φ ∈ U (K ) such that u(T ) = u0Φ; the operator
Φ is called a geometric phase if it agrees with the holonomy of the loop at u0. If Φ is a geometric phase, the evolution
in E at the final time T does not depend on the specific Hamiltonian governing the evolution, but only on the loop (up
to reparametrization) and on the geometry of St(K ,H).

The geometric phase is often achieved in adiabatic processes, as in Berry’s pioneering work [3]. In this case its
geometrical description is more involved. For example, in [37] a family of Hamiltonians is considered which depend
on some control parameters. The Hamiltonians are supposed to have null eigenspaces with the same degeneracy,
so that a map from the parameter manifold on a Grassmann manifold GrK (H) is given. A loop in the parameter
space gives a time-dependent Hamiltonian H(t) and also a loop in GrK (H). Under adiabatic approximation, the
loop in GrK (H) can be considered the evolution of the initial eigenspace in the dynamic governed by H(t) and
the corresponding operator Φ approximates the geometric phase. In this setting the geometry of the parameter
manifold is relevant, since geometric phases are holonomies relative to the pullback of GrK (H) on the parameter
space.

A renewed interest for geometric phases in physics is motivated by the possible applications in quantum
computation, where geometric phases are proposed to implement logic operations [37,26]. Geometric phases are
believed to be robust against noise and control parameter fluctuations, due to their geometric nature. At the moment,
this claim is just a conjecture, but it is supported by analytic results in some models of either adiabatic or non-adiabatic
implementation. For a discussion on this point, see [39] and references therein.

The usual descriptions of geometric phases consider only a finite dimensional setting [26] or at least the Grassmann
manifolds of finite dimensional subspaces of an infinite dimensional separable Hilbert space [11,12]. In this paper we
study the arising of geometric phases without any adiabatic assumption and without any restriction on the dimensions
of H and K . Since it is natural to describe curves of subspaces by curves of projection operators, we study the time-
dependent Hamiltonians which admit a curve of projections as an invariant and conditions to get geometric phases.
The simple case of time-independent Hamiltonians which admit a closed geodesic as an invariant is investigated.
For separable Hilbert spaces, the relative holonomies are characterized: they are reflections in K . More generally,
we consider geodesic loops, i.e. loops composed by geodesic arcs, and investigate the subgroup of the holonomies
generated by these special loops. We show that this group agrees with the entire U (K ) if K is finite dimensional
or if dim(K ) ≤ dim(K ⊥). This obviously implies that the holonomy group of A agrees with U (K ). The remaining
case, dim(K ⊥) finite and dim(K ) infinite, is critical: we prove that the holonomy group is contained in the unitary
Fredholm group of K and that, using holonomies relative to geodesic loops, one can approximate a generic unitary
operator in the Fredholm group of K .

The plan of the paper is the following. In Section 2 we recall the topology and the structure of a holomorphic Banach
manifold on GrK (H) and the real analytic bundle structure on St(K ,H). A real analytic differential structure is directly
given on the space PK (H) of orthogonal projections with range isomorphic to K , which makes the correspondence
between subspaces and projections a diffeomorphism. In Section 3 the canonical connection B on the bundle U (H)
overPK (H) is given. The induced connectionA on the Stiefel bundle and the induced linear connection ∇ on TPK (H)
are constructed. In Section 4 we introduce the geometric Hamiltonians, i.e. the Hamiltonians which admit a curve of
projections as an invariant and whose dynamics on St(K ,H) implements the horizontal lift. In Section 5 we introduce
phases and geometric phases and illustrate their meaning in quantum systems. In Section 6 we study the consistency
of the group of the holonomies generated by closed geodesics and of the group of the holonomies generated by loops
which are products of geodesic arcs. In the Appendix, details are given on the construction of the Hausdorff distance
on the set Gr(H) of the closed subspaces in H and the equivalence with the opening distance is proved.

2. Manifolds of subspaces and manifolds of linear embeddings

2.1. Topologies and distances on Gr(H) and P(H)

In the following we will assume that H and K are complex separable Hilbert spaces. However, we stress that the
statements given in Sections 2–5 still hold in the case of non-separable H and K . We denote by L(H) the C∗-algebra
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of bounded operators of H, by P(H) the set of orthogonal projections, endowed with the induced distance, given by

d(P, Q) := ‖P − Q‖ for P, Q ∈ P(H);

the metric space (P(H), d) is complete and d(P, Q) ≤ 1.
The action of the unitary group U (H) on P(H), given by P 7→ U PU Ď, is distance preserving. Moreover, P

and Q belong to the same connected component of P(H) if and only if they belong to the same unitary orbit or,
equivalently, if the corresponding subspaces are isomorphic. For every Hilbert space K , we denote by PK (H) the
connected component in P(H) of projection operators on subspaces which are isomorphic to K .

The set of all (closed) subspaces of H is denoted by Gr(H). The subset of all subspaces of H which are isomorphic
to a given Hilbert space K will be denoted by GrK (H). Now we will introduce a natural distance on Gr(H). It is well
known that the projective space P(H) = GrC(H) is a complete metric space if endowed with the distance induced
by the Fubini-Study metric [15,7]. Each non-zero subspace E of H can be identified with the closed subset of P(H)
consisting of all 1-dimensional subspaces lying in E . So we can endow Gr(H) with the distance D induced by the
Hausdorff distance between closed subsets of P(H). The details on this construction can be found in the Appendix.

Consider now the canonical bijection P : Gr(H) → P(H), E 7→ PE which associates to each subspace E the
orthogonal projection on E . Let E and F be non-zero subspaces and let P and Q denote the orthogonal projections
on E and F , respectively; then D(E, F) ≤ π and

‖P − Q‖ = sin
(

1
2

D(E, F)

)
as will be proved in the Appendix. By the above formula we see that the map P : Gr(H) → P(H) is a
homeomorphism.

2.2. The manifold GrK (H) and related bundles

In this paper we consider infinite dimensional holomorphic or real analytic Banach manifolds. For an introduction
to these arguments we refer to [32]. The theory of infinite dimensional Banach manifolds is quite similar to the
ordinary finite dimensional one. The more relevant differences arise from the fact that the closed subspaces of a
Banach space are not necessarily complemented. We stress that every submanifold of a Banach manifold with model
space E is modelled on a splitting subspace of E . For details, see [18].

In the following the term analytic will always mean real analytic and we will reserve the term holomorphic to
the complex case. By homogeneous Banach analytic manifold we mean a Banach analytic manifold endowed with
a transitive analytic action of a Banach Lie group. The notion of homogeneous Banach holomorphic manifold is
analogously defined.

In this paper we are only interested in the actions of suitable subgroups of GL(H). As is well known, GL(H)
is a complex Lie group with Lie algebra L(H). The unitary group U (H) is a closed real Lie subgroup of GL(H),
with Lie algebra the real Banach Lie algebra u(H) of skew hermitian elements in L(H). For a introduction to infinite
dimensional Banach Lie groups and homogeneous Banach manifolds, see [6,13,14,21,24] and [32].

Let K and H be complex Hilbert spaces. Then L(K ,H) denotes the complex Banach space of all bounded linear
operators of K in H. A map ϕ ∈ L(K ,H) is a (linear) embedding if it is a homeomorphism onto its image. Therefore
the image Im(ϕ) is a subspace of H. We denote by Emb(K ,H) the set of the embeddings and by St(K ,H) the subset
of the isometric embeddings. An embedding u ∈ Emb(K ,H) is isometric if and only if uĎu = 1K ; therefore St(K ,H)
is closed in Emb(K ,H). Moreover, uuĎ is the projection operator on the range Im(u) of u.

For every embedding ϕ, ϕĎϕ ∈ GL(K ). Conversely, let ϕ ∈ L(K ,H) with ϕĎϕ ∈ GL(K ). Then ϕ ∈ Emb(K ,H):
denoting by |ϕ| the unique positive operator in GL(K ) such that |ϕ|

2
= ϕĎϕ and considering the linear map

uϕ : K → H defined by uϕ := ϕ|ϕ|
−1, one easily verifies that uϕ is an isometric embedding, with Im(uϕ) = Im(ϕ).

Therefore ϕ = uϕ |ϕ| is an embedding. We conclude that

Emb(K ,H) = {ϕ ∈ L(K ,H) : ϕĎϕ ∈ GL(K )}.

Since Emb(K ,H) is open in L(K ,H), it is a holomorphic manifold.
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The maps | | : Emb(K ,H) → GL(H), ϕ 7→ |ϕ| and [ : Emb(K ,H) → Emb(K ,H), ϕ 7→ [(ϕ) := uϕ are analytic.
Therefore the map Im : Emb(K ,H) → GrK (H) ϕ 7→ Im(ϕ) is continuous as the product of the continuous maps
ϕ 7→ uϕ 7→ uϕuĎ

ϕ 7→ P−1(uϕuĎ
ϕ).

The group GL(K ) acts holomorphically and freely from the right on Emb(K ,H) by composition. Two elements
of Emb(K ,H) lie in the same orbit if and only if they have the same image. By restriction, we obtain a distance
preserving free right action of U (K ) on St(K ,H). Moreover, there is a left transitive action of GL(H) on Emb(K ,H),
given by (g, ϕ) 7→ gϕ. The restriction to U (H) gives a left transitive action on St(K ,H). Analogously, a natural left
transitive action µ̃ of GL(H) on GrK (H) is given by µ̃(g, E) := g.E , with g.E = {gv, v ∈ E}. Its restriction µ to
U (H) is transitive and distance preserving.

The holomorphic manifold structure on GrK (H) is well known and has been more generally given for the set of
splitting subspaces of a Banach space, see [9,14,32]. Here we summarize some relevant results.

Proposition 1. The following statements hold.
1. GrK (H) is a holomorphic Banach manifold. With respect to the left action µ̃ of GL(H), GrK (H) is a

homogeneous holomorphic manifold. With respect to the left action µ of U (H), GrK (H) is a homogeneous analytic
manifold.

2. The map Im : Emb(K ,H) → GrK (H) defines a holomorphic GL(K )-principal bundle and GL(H) acts as a
group of holomorphic bundle isomorphisms.

3. St(K ,H) is a closed analytic submanifold of Emb(K ,H). The restriction of the projection Im to St(K ,H) defines
an analytic U (K )-principal bundle, called the Stiefel bundle, on which U (H) acts transitively as a group of analytic
bundle isomorphisms.

4. For every E ∈ GrK (H) the tangent space TE GrK (H) is identified with L(E, E⊥) as a complex Banach space;
the complex structure is given by JE (z) := iz for z ∈ L(E, E⊥) and is norm preserving.

Remark. 1. The manifold structure on GrK (H) is compatible with the distance D. In fact a typical chart βE at
E ∈ GrK (H) is constructed on UE := {F ∈ GrK (H) : D(E, F) < π} as follows. For every F ∈ UE , there
exists a unique zF ∈ L(E, E⊥) such that F = graph(zF ) = {x + zF x | x ∈ E} (see Corollary 2 in Appendix). The
map βE : UE → L(E, E⊥), βE (F) = zF results to be a homeomorphism with respect to the distance topologies. The
inverse map is αE : L(E, E⊥) → UE , αE (z) = graph(z).

2. If dim(K ) is finite, GrK (H) can be given a Kähler structure; if K is infinite dimensional, GrK (H) can be given a
Finsler structure.

One can also realize GrK (H) as a coset space.

Proposition 2. Let K be a subspace of H, P the orthogonal projection on K and µ̃ the left action of GL(H) on
GrK (H). The following statements hold.

1. The isotropy group GL K (H) at K is a Banach Lie subgroup with Lie algebra

t := {X ∈ L(H) | P⊥ X P = 0},

which is a complemented Lie subalgebra of L(H) with complementary subspace

z := {Z ∈ L(H) | Z = P⊥Z P}.

2. The action µ̃ is holomorphic and transitive. The orbit map q̃K : GL(H) → GrK (H), q̃K (g) := g.K is a
holomorphic submersion.

3. The coset space GL(H)/GL K (H) is a holomorphic Banach manifold. The map q̃K quotients to an equivariant
biholomorphic diffeomorphism of GL(H)/GL K (H) with GrK (H).

4. The map q̃K : GL(H) → GrK (H) defines a holomorphic GL K (H)-principal bundle with holomorphic left
action of GL(H).

Proof. 1. It is obvious since GL K (H) is the subgroup of the elements g in GL(H) which satisfy P⊥g P = 0.
2. The action is transitive and holomorphic since it is the quotient action of the (transitive and) holomorphic action

of GL(H) on Emb(K ,H) (see point 2 in Proposition 1). We verify that q̃K is a submersion. This is true since, for
every E ∈ GrK (H) the map σ : UE → GL(H), σ(F) := 1H + zF PE is a local section of q̃K .

3. One has just to apply Theorems 8.19 and 8.21 in [32] in their holomorphic versions.
4. It is an obvious consequence of the above statements. �
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Proposition 3. Let K and P be as in the above proposition and µ be the left action of U (H) on GrK (H). The following
statements hold.

1. The isotropy group at K is the Banach Lie subgroup UK (H) := U (K )× U (K ⊥), with Lie algebra

k := u(K )⊕ u(K ⊥),

which is a reductive Lie subalgebra of u(H) with complementary subspace the AdUK (H)-invariant subspace

p := {W ∈ u(H) | W P = P⊥W }.

We denote by πk the projection on k along p.
2. The action µ is analytic and transitive. The orbit map qK : U (H) → GrK (H), qK (U ) = U.K is an analytic

submersion.
3. The coset space U (H)/UK (H) is a symmetric analytic Banach manifold. The map qK quotients to an equivariant

bianalytic diffeomorphism of U (H)/UK (H) with GrK (H).
4. The map qK : U (H) → GrK (H) defines an analytic UK (H)-principal bundle with analytic left action of U (H).
5. The complex structure of GrK (H) induces on T (U (H)/UK (H)) an invariant complex structure tensor J which

is norm preserving. On p ' ToU (H)/UK (H), J is given by J (W ) = i[W, P] and is AdUK (H)-invariant.

Proof. 1. It is obvious.
2. To prove that µ is real analytic, we recall that U (H) is a Lie subgroup of GL(H), hence an analytic submanifold,

and that µ is the restriction to U (H) of the natural action of GL(H) on GrK (H). The only non-trivial point to check
is that the orbit map qK : U (H) → GrK (H) admits analytic local sections. Consider the chart βK : UK → L(K , K ⊥)

and compose it with the analytic map z 7→ Vz defined in Lemma 1 below. This gives the required local section for qK .
3. One gives U (H)/UK (H) the structure of a Banach manifold as in Theorem 8.19 in [32]. For the definition of a

symmetric manifold we refer to [15]. In this homogeneous space the symmetry at o is the quotient of adjoint action
on U (H) of the unitary operator 2P − 1H. As usual, we denote by o the coset containing the unit operator. The second
statement follows by Proposition 8.21 in [32].

4. It is an obvious consequence of the above statements.
5. By invariance, J is characterized by its restriction J |p to p ' To(U (H)/UK (H)). One can easily check that

(J |p)2 = −1p and that the operator J |p is norm preserving and AdUK (H)-invariant. Now, TeqK is the R-linear
isomorphism from p to TK GrK (H) ≡ L(K , K ⊥), given by the map W 7→ W |K for W ∈ p. Its inverse is the map
z 7→ Wz := P⊥z P − PzĎP⊥. We have J (Wz)|K = i[Wz, P]|K = i z, as one can easily verify. �

2.3. The manifold of the orthogonal projections

One could use Proposition 1 and the homeomorphism P : Gr(H) → P(H) to endow P(H) with a holomorphic
structure. Nevertheless, we find it interesting to give PK (H) an analytic manifold structure and an almost complex
structure in an independent way and then prove that the canonical homeomorphism P results to be a bianalytic
diffeomorphism preserving the almost complex structures. For simplicity, we assume that K is a non-zero subspace
of H and we denote by P the orthogonal projection on K .

Lemma 1. For z ∈ L(K , K ⊥), consider the operator Az := 1H + P⊥z P − PzĎP⊥. The following statements hold.
1. Az ∈ GL(H) and is normal, with polar decomposition Az = Vz |Az | where Vz is unitary and |Az | ∈ GL(H).
2. graph(z) = Vz K = Az K and Pgraph(z) = Az P A−1

z = Vz PV Ď
z .

Proof. 1. We have AĎ
z = A−z . Therefore,

Az AĎ
z = 1H + PzĎz P + P⊥zzĎP⊥

= A−z Az = AĎ
z Az

so that Az is a normal operator and AĎ
z Az = ρ2

z ⊕ ρ2
zĎ

with

ρz = (1K + zĎz)1/2 and ρzĎ = (1K ⊥ + zzĎ)1/2.

We remark that ρz is positive with 1E ≤ ρz ≤ (1 + ‖z‖2)1/21K and analogously for ρzĎ . Therefore, ρz ∈ GL(K ) and
ρzĎ ∈ GL(K ⊥). By |Az | ∈ GL(H) we get Az ∈ GL(H) and Vz ∈ U (H).
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2. For every v ∈ K we have Azv = v + zv so that graph(z) = Az(K ) = Vzρz(K ) = Vz(K ), since ρz ∈ GL(K ).
We obtain that Pgraph(z) = Vz PV Ď

z and it equals Az P A−1
z since |Az | commutes with P . �

We define the map

αP : L(K , K ⊥) → L(H), αP (z) = Az P A−1
z .

Lemma 2. The map αP is a homeomorphism with the open ball

UP := {Q ∈ P(H) | ‖Q − P‖ < 1}.

Its inverse is

βP : UP → L(K , K ⊥), βP (Q) = P⊥((Q|K )−1)Ď.

Proof. By Lemma 1, αP (z) is the orthogonal projection operator on graph(z) so that αP = P ◦ αK and it is a
homeomorphism with UP by Proposition 18 in the Appendix. The inverse of αP is the continuous map βK ◦P−1. We
have to prove that it equals βP . Let Q ∈ UP and F = P−1(Q). By applying the definition of βK given in Corollary 2
in the Appendix, one has

βP (Q) = P⊥((Q|K )−1)Ď = P⊥(P|F)−1
= βK (F). �

Proposition 4. 1. PK (H) is an analytic manifold and an analytic submanifold of Lsa(H), the real Banach space of
selfadjoint elements in L(H).

2. The tangent space at P is

{A ∈ Ls.a.(H) | AP = P⊥ A} =: m.

3. A natural almost complex structure is defined by

JP (A) = i[A, P] for A ∈ m.

In the identification of m with L(K , K ⊥) given by A 7→ A|K , one has JP (A)|K = i A|K for every A ∈ m.
4. The map P : GrK (H) → PK (H) is an equivariant bianalytic diffeomorphism and preserves the almost complex

structures. With respect to the action of U (H), PK (H) is a homogeneous analytic manifold.

Proof. 1. Let P̃ ∈ PK (H) and V ∈ U (H) be such that P̃ = V PV Ď. We define

βP̃ : UP̃ → L(K , K ⊥), βP̃ (Q) = βP (V
ĎQV ).

The chart change is

(βP̃ ◦ αP )(z) = P⊥((V ĎVz PV Ď
z V |K )−1)Ď

which is analytic as a restriction of analytic maps. Therefore PK (H) is an analytic manifold. The inclusion of PK (H)
in Lsa(H) is an analytic immersion since it locally looks as ι(z) = Az P A−1

z , where z 7→ Az is an affine map.
Moreover, its derivative at 0, ι′(0) : L(K , K ⊥) → Ls.a.(H) is ι′(0)(z) = z ◦ P + (z ◦ P)Ď, for z ∈ L(K , K ⊥); hence
it is injective and its image is a complemented subspace, as one can easily see.

2. For every C1 curve ℘ in P(H) the condition ℘ = ℘2 gives ℘℘̇ = ℘̇℘⊥.
3. It is obvious.
4. P is a bianalytic diffeomorphism since locally it agrees with αP ◦ βK and its inverse is locally expressed by

αK ◦ βP . By statement 3 and Proposition 3, it follows that P preserves the almost complex structures. Using the
U (H)-equivariance of P , one obtains the remaining statements. �

A structure of analytic manifold can be introduced on the set of selfadjoint projections of a unital C∗-algebra A.
This more general setting has been investigated in [2,8,27,28] and [36]. It was proved that the manifold of selfadjoint
projections of A is a (real) analytic submanifold of A and admits an integrable complex structure.
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3. The connection B and induced connections

In this section K will still denote a non-zero subspace of H and P the orthogonal projection on K . Let θ be the
canonical 1-form on U (H), the unique left invariant u(H)-valued 1-form such that θ(X) = X , for every X ∈ u(H).
Since the subspace p is AdUK (H)-invariant, the k-valued 1-form B := πk ◦ θ is a connection 1-form on the UK (H)-
principal bundle defined by πK : U (H) → PK (H), πK (U ) = U PU Ď. Moreover, left invariance of θ implies left
invariance of B.

We will identify the Stiefel bundle and the tangent bundle on PK (H) with bundles associated to the bundle
πK : U (H) → PK (H) and we will construct on these bundles the connections induced by B. The construction of
bundles associated to principal bundles and induced connections, given in the setting of ordinary manifolds (see,
e.g. [17]), can be extended without problems to Banach manifolds.

We consider the following analytic right action of UK (H) ≡ U (K )× U (K ⊥) on U (H)× U (K ),

r((U, S), (V1 × V2)) := (U (V1 × V2), V Ď
1 S),

and endow the orbit space U (H)×UK (H) U (K ) with the unique analytic manifold structure such that the projection of
U (H)×U (K ) on the orbit space is a submersion. The induced projection of U (H)×UK (H) U (K ) onto PK (H) defines
the associated bundle with fiber U (K ).

We can identify U (H)×UK (H) U (K ) with St(K ,H) as follows: define q̃0 : U (H) × U (K ) → St(K ,H) by
q̃0(U, S) := Uu0S, where u0 ∈ St(K ,H) is the canonical inclusion. The map q̃0 quotients to an isomorphism
of U (H)×UK (H) U (K ) with St(K ,H). We remark also that the map U 7→ Uu0 quotients to a diffeomorphism of
St(K ,H) with U (H)/U (K ⊥).

The principal connection B induces a left invariant connectionA on St(K ,H). For every C1 curve γ : I → PK (H),
where I is an interval of the real line, and t, t0 ∈ I,

PtA(γ, t, q̃0(U, S)) = q̃0(PtB(γ, t,U ), S) (3.1)

for every U ∈ U (H) over γ (t0) and S ∈ U (K ). Here PtA and PtB denote the parallel transport w.r.t. A and B,
respectively. The connection A results to be a principal connection on the Stiefel bundle given by π : St(K ,H) →

PK (H), π(u) = uĎu, as is illustrated in the following proposition.

Proposition 5. 1. The tangent space at u of St(K ,H) is the space of all ξ ∈ L(K ,H) such that

ξĎu + uĎξ = 0K . (3.2)

2. The vertical subspace at u is the subspace of Tu St (K ,H) consisting of all ξ ∈ L(K ,H) such that Im(ξ) ⊂

Im(u).
3. The u(K )-valued 1-form uĎdu defined by

uĎdu(ξ) = uĎξ, ξ ∈ TuSt(K ,H)

is a principal connection 1-form on St(K ,H) whose parallel transport is PtA. Its horizontal subspace Hu(St(K ,H))
at u consists of all ξ ∈ TuSt(K ,H) such that Im(ξ) ⊂ Im(u)⊥.

Proof. 1. Differentiating the condition uĎu = 1K , we obtain formula (3.2).
2. Differentiating the mapping π(u) = uuĎ, we get

(Tuπ)(ξ) = ξuĎ
+ uξĎ ∈ L(H).

The vertical subspace at u of St(K ,H) is the kernel of Tuπ , described by the linear equations

ξĎu + uĎξ = 0K and ξuĎ
+ uξĎ = 0H.

Therefore ξĎu = −uĎξ and ξ + uξĎu = 0K , so that ξ = uuĎξ as required.
3. One can easily verify that uĎdu is a principal connection 1-form on St(K ,H) and that its kernel at u is

Hu(St(K ,H)). Let u0,U, S, γ be as in formula (3.1). Denote u(t) := PtA(γ, t,Uu0S) and U (t) := PtB(γ, t,U ).
The formula (3.1) can be written simply as u(t) = U (t)u0S. Differentiating, we obtain

uĎ(t)u̇(t) = SĎuĎ
0U Ď(t)U̇ (t)u0S = 0K

since U Ď(t)U̇ (t) ∈ p. �
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For H finite dimensional, the connection A was proved to be a universal connection for U (K )-principal bundles in
the celebrated paper of Narasimhan and Ramanan [23].

For G a finite dimensional Lie group and H a closed reductive connected subgroup, the theory of G-invariant linear
connections on T (G/H) is well-established (see e.g. Theorem 3.2.31 in [19]). Identifying PK (H) with U (H)/UK (H)
we can analogously construct a linear connection on TPK (H) induced by B.

Since m is AdUK (H)-invariant, we can consider the joint right action of UK (H) on U (H)× m given by

(U, A).S = (U S, SĎAS), S ∈ UK (H).

We denote by U (H)×UK (H)m the orbit space and by q̃ the projection of U (H) × m on TPK (H) given by
q̃(U, A) 7→ U AU Ď, which quotients to a diffeomorphism of U (H)×UK (H)m with TPK (H), so that one can identify
the tangent bundle onPK (H)with the associated vector bundle of fiber m. Moreover, the invariant principal connection
B induces an invariant linear connection ∇ on U (H)×UK (H)m. Again, for every C1 curve ℘ : I → PK (H), t, t0 ∈ I,
and for every U ∈ U (H) over ℘(t0) and A ∈ m, one has

Pt∇(℘, t, q̃(U, A)) = q̃(PtB(℘, t,U ), A), (3.3)

where Pt∇ is the parallel transport w.r.t. the associated linear connection ∇.

Proposition 6. For Y ∈ m consider the vector field Y ∗ defined by Y ∗(Q) := −i[Y, Q] for Q ∈ PK (H). The linear
connection ∇ on TPK (H) associated to B is uniquely defined by

∇Y ∗(P)X = [Y ∗, X ](P)

for all local vector fields X around P, where [ , ] denotes the Lie bracket of vector fields.

Proof. The field Y ? is complete, with flow given by (Q, t) 7→ e−iY t QeiY t . Its integral curve at P is the curve
℘(t) := e−iY t PeiY t . We remark that U (t) = eiY t isB-horizontal for Y ∈ m, sinceB(U̇ (t)) = i(PY P+P⊥Y P⊥) = 0.
Formula (3.3) gives

Pt∇(℘, t, A) = e−iY t AeiY t
∀A ∈ m. (3.4)

Let X be a local vector field around P . Then

∇Y ∗(P)X = lim
t→0

1
t

(
Pt∇(℘−1, t, X (℘ (t)))− X (℘ (0))

)
= lim

t→0

1
t

(
eiY t X (℘ (t))e−iY t

− X (℘ (0))
)

= [Y ∗, X ](P).

By invariance, this defines ∇ completely. �

The following proposition illustrates the geodesics in PK (H).

Proposition 7. Let K , P and p be as in Proposition 3 and W ∈ p. The following statements hold.
1. The curve of unitary operators U (t) = eW t , t ∈ R, is B-horizontal.
2. The curve of isometric embeddings u(t) = eW t u, t ∈ R, is A-horizontal for every u ∈ St(K ,H) with uuĎ

= P.
3. The curve of projection operators ℘(t) = etW Pe−tW , t ∈ R, is a geodesic in PK (H) and every geodesic in

PK (H) starting from P can be represented in this form.

Proof. 1. See the proof of point 2 in Proposition 6.
2. This follows by Eq. (3.1).
3. For the proof, see Theorem XI. 3.2, Vol. II in [15]. �

As an obvious consequence of the above proposition, the geodesics in GrK (H) starting from K are of the form
eW t .K with W ∈ p.
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4. Curves of projections and geometric Hamiltonians

Now we discuss “dynamically driven” lifts in St(K ,H) of a curve in the space of projections, i.e. lifts generated
by the evolution governed by a time dependent Hamiltonian. We give the conditions on the Hamiltonian which ensure
that these lifts are horizontal.

Let C : I → L(H) be a continuous curve of operators. In this section we assume that 0 ∈ I and we refer to C(0)
as the starting point of C . We denote by Ċ the curve of derivatives, when C is a C1 curve. For a pair C1,C2 of curves
we denote by C1C2 the curve (C1C2)(t) := C1(t)C2(t). We also set [C1,C2] := C1C2 −C2C1. We denote a C1 curve
in PK (H) by ℘, its starting point ℘(0) by P and the range of P by K . From now on, U will mean a C1 curve in U (H)
with U (0) = lH and u will mean a C1 curve in St(K ,H). We denote by u0 the starting point u(0).

Let Q be any orthogonal projection in H. We will say that X ∈ L(H) is Q-diagonal if Q X Q⊥
= 0 and Q⊥ X Q = 0;

we will say that X is Q-off-diagonal if Q X Q = 0 and Q⊥ X Q⊥
= 0.

Let H be a time-dependent Hamiltonian, i.e. a continuous curve of bounded skew-adjoint operators in H. We will
say that the Hamiltonian H is ℘-diagonal (or ℘-off-diagonal) if H(t) is ℘(t)-diagonal (or ℘(t)-off-diagonal) for all
t . If ℘ is a geodesic with ℘(t) = etW Pe−tW as in Proposition 7, then W is ℘-off-diagonal, as one can easily verify.
Given ℘, one can construct a ℘-off-diagonal Hamiltonian: actually, the time-dependent Hamiltonian

H℘
:= [℘̇, ℘] = ℘⊥℘̇℘ − ℘℘̇℘⊥

is ℘-off-diagonal.
Let a curve ℘ and a Hamiltonian H satisfy

℘̇ = [H, ℘]. (4.1)

In this case we say that ℘ is an invariant of H or that H admits ℘ as an invariant. This notion can be extended in an
obvious way to continuous piecewise C1 curves.

The following proposition characterizes the Hamiltonians which admit a curve ℘ as an invariant.

Proposition 8. Let ℘ be a C1 curve in PK (H). A Hamiltonian H admits ℘ as an invariant if and only if

H = H℘
+ H δ

where H δ is ℘-diagonal.

Proof. Assuming Eq. (4.1), we have H℘ = ℘̇+℘H , so that ℘⊥ H℘ = ℘⊥℘̇℘ and ℘H℘⊥
= −℘℘̇℘⊥. Conversely,

we observe that H℘ satisfies Eq. (4.1) and that [℘, H δ
] = 0. �

We remark that ℘ is a geodesic if and only if H℘ is constant. Assuming W = H℘(t) for every t , then W is ℘(0)-
off-diagonal and ℘(t) = eW t℘(0)e−W t . Proposition 7 assures that ℘ is a geodesic starting from ℘(0). The converse
is immediate.

Let U (t) be the C1 curve in U (H) satisfying the Schrödinger equation defined by H :

U̇ (t)U Ď(t) = H(t), U (0) = lH. (4.2)

For every u0 ∈ St(K ,H), the curve u(t) := U (t)u0 in St(K ,H) satisfies

u̇(t) = H(t)u(t), u(0) = u0. (4.3)

Proposition 9. Let H be a Hamiltonian which admits ℘ as an invariant and let u be a curve as in Eq. (4.3), with u0
over P. The following statements hold.

1. The curve u is a lift of ℘ in St(K ,H) starting from u0.
2. The curve u is the horizontal lift of ℘ w.r.t. the connection A on St(K ,H) if and only if ℘H℘ = 0.

Proof. 1. One can easily verify that u(t)u(t)Ď = U (t)PU (t)Ď is the (unique) solution of Eq. (4.1) with initial condition
P .

2. Let ℘H℘ = 0. Since u(t) take values in the range of ℘(t), Eq. (4.3) becomes

u̇(t) = H(t)℘ (t)u(t) = ℘⊥(t)℘̇(t)℘ (t)u(t). (4.4)

Hence A(u̇(t)) = uĎ(t)(℘⊥(t)℘̇(t)℘ (t))u(t) = 0, since u = ℘u implies uĎ℘⊥
= 0.
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Conversely, assume that A(u̇) = uĎu̇ = 0. By composing the equation uĎu̇ = 0 with u on the left and with uĎ on
the right, and by using the equation u̇ = Hu, we obtain ℘u̇uĎ

= ℘HuuĎ
= ℘H℘ = 0. �

We remark that every lift u of a curve ℘ is piecewise a solution of Eq. (4.3) for some Hamiltonian H . This
follows from the fact that St(K ,H) is isomorphic to the homogeneous space U (H)/U (K ⊥) and that the projection
U (H) → St(K ,H) admits local sections.

Proposition 9 suggests the following terminology: a Hamiltonian H which admits ℘ as an invariant will be called
geometric for ℘ if ℘H℘ = 0 is satisfied. If one reparametrizes ℘ by a diffeomorphism τ → t (τ ) of the interval I,
the curve ℘̃(τ ) := ℘(t (τ )) is an invariant for the Hamiltonian

H̃(τ ) := H(t (τ ))
dt

dτ
(τ ). (4.5)

Moreover, if H is geometric for ℘, then H̃ is geometric for ℘̃.

Corollary 1. Let ℘ be a C1 curve in PK (H) with ℘(0) = P and let V be the C1 curve in U (H) satisfying

V̇ (t)V Ď(t) = H℘(t) V (0) = lH.

The following statements hold.
1. V is the B-horizontal lift in U (H) of ℘ starting on lH .
2. H℘ is the unique Hamiltonian which is geometric both in St(K ,H) for ℘ and in St(K ⊥,H) for ℘⊥.

Proof. 1. The Hamiltonian H℘ admits the curve ℘ as an invariant, thus ℘(t) = V (t)PV Ď(t), so that V is a lift of
℘. We will show that B(V̇ ) = P(V ĎH℘V )P + P⊥(V ĎH℘V )P⊥ is zero. The first term P(V ĎH℘V )P is zero: by
composing it with V on the left and with V Ď on the right, we get ℘H℘℘ = 0. The proof that P⊥(V ĎH℘V )P⊥

= 0
is analogous.

2. It follows from point 2 of Proposition 9. �

Now we get in our framework a well known result (see for instance [22]).

Proposition 10. Let us denote by U the solution of Eq. (4.2) for H = H℘
+ H δ . The following statements hold.

1. U (t) = V (t)UI (t), where UI (t) is the solution of Eq. (4.2) for the Hamiltonian HI = V ĎH δV .
2. HI is P-diagonal.
3. UI takes values in U (K ) × U (K ⊥). Its components U1 ∈ U (K ) and U2 ∈ U (K ⊥) satisfy the equations

U̇1 = H1U1 and U̇2 = H2U2, where H1 and H2 are the restrictions of HI to K and K ⊥, respectively.

Proof. 1. Taking the derivative of UI , we obtain

U̇I = −V ĎH℘U + V Ď(H℘
+ H δ)U = V ĎH δV UI .

2. From V (t)P = ℘(t)V (t) and PV Ď(t) = V Ď(t)℘ (t), we get PV Ď(t)H δ(t)V (t)P⊥
= V Ď(t)℘ (t)H δ

(t)℘⊥(t)V (t) = 0, since H δ is ℘-diagonal.
3. From ℘(t) = V (t)PV Ď(t) = U (t)PU Ď(t), we get P = UI (t)PUI (t). The remaining of this statement follows

from the uniqueness of the solution of Eq. (4.2). �

Using the formalism of the above proposition, the evolution of any u0 ∈ St(K ,H) with u0uĎ
0 = P is u(t) =

V (t)UI (t)u0. We are interested in Hamiltonians for which this evolution differs from the horizontal lift in a simple
way.

Example 1. ℘H δ℘ = 0. This is the case of Hamiltonians which are geometric for ℘, so that u(t) agrees with the
horizontal lift of ℘, as proved in Proposition 9.

Example 2. (℘H δ℘)(t) = iλ(t)℘ (t) with λ(t) ∈ R. Then UI (t) = eiα(t)P + U2(t) where α(t) =
∫ t

0 λ(s)ds, and
U2(t) ∈ U (K ⊥), so that u(t) = eiα(t)V (t)u0. In this case u differs from the horizontal lift only by a numerical factor
which is assumed under control. If ℘ is a curve of monodimensional projections the condition is obviously satisfied.
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The second example suggests the interest of the case in which the factors in U = V UI are commuting. We restrict
our attention to a time-independent Hamiltonian H(t) = X and assume that

[Xk, Xp] = 0 (4.6)

where Xk and Xp are the projections on k and p, respectively. The following proposition holds.

Proposition 11. Let X ∈ u(H) and ℘(t) = et X Pe−t X . Then X satisfies Eq. (4.6) if and only if ℘ is a geodesic.

Proof. Assuming Eq. (4.6), we have ℘(t) = et X Pe−t X
= et Xpet Xk Pe−t Xke−t Xp = et Xp Pe−t Xp . Thus ℘ is a

geodesic by Proposition 7.
Conversely, let ℘(t) = et X Pe−t X

= etW Pe−tW , with W ∈ p. From ℘̇(0) = [X, P] = [W, P] it follows easily
that W = Xp. Moreover UI (t) = e−t Xpet X is a curve in UK (H) whose generator (U̇I U Ď

I )(t) = e−t Xk(X − Xk)et Xk =

e−t Xk Xpet Xp belongs to k for every t . This implies that [Xp, Xk] belongs to k. Taking into account that p is adk-
invariant, we obtain that [Xp, Xk] = 0. �

5. Geometric phases

Assume that℘ is a loop at P , i.e. that I = [0, T ] and that℘(T ) = ℘(0) = P . Let u(t) be a C1 lift of℘ in St(K ,H)
starting from u0 over P . There exists a unique Φ ∈ U (K ) such that u(T ) = u0Φ. We call Φ the phase acquired by
u0 along the lift u or the phase of the lift u. We say that the phase Φ is a geometric phase if Φ = Hol(A, ℘, u0). The
above definitions can be given analogously when the curves ℘ and u are piecewise C1.

It could appear inappropriate to call “phase” a unitary operator. In the case K ' C, the unitary operators are of the
form eiθ , θ ∈ R (mod 2π) where θ is the phase. Moreover, for dim(K ) > 1 the term non-Abelian geometric phase is
commonly used to denote the above defined unitary operator. Here we adopt a general term valid for any dimension.

If a Hamiltonian H(t) admits a loop ℘ as an invariant and U (t) is the solution of Eq. (4.2), the curve u(t) = U (t)u0
is a lift of ℘ and its phase satisfies

U (T )u0 = u0Φ. (5.1)

If K is a subspace of H and u0 is the canonical inclusion, then Φ agrees with the restriction of U (T ) to K .
Many different Hamiltonians can give the same phase. Indeed, let X (t) be a C1 curve in U (H) starting from 1H

such that X (T )u0 = u0, then the Hamiltonian Ẇ (t)W Ď(t) with W (t) = U (t)X (t) gives the same phase as H . If a
Hamiltonian H gives a geometric phase at u0, the same H induces a geometric phase at every ũ0 over P: let ũ0 = u0S,
with S ∈ U (K ). Then

Φ̃ = ũĎ
0U (T )ũ0 = S−1ΦS = Hol(A, ℘, ũ0).

The phase does not change under reparametrization of ℘ and H as in Eq. (4.5).
The above geometrical setting can be applied to very different physical contexts. Let H be the Hilbert space

associated to the description of a quantum system. The set of (pure) states is represented by GrC(H) = P(H), the
projective space of H, and St(C,H) can be identified with S(H), the set of unit vectors of H. Of course, these vectors do
not have a direct physical meaning: ψ ∈ S(H) is just a representative for the corresponding state ψ̂ , the 1-dimensional
subspace spanned by ψ . The dynamics of the system is governed by a suitable Hamiltonian H(t) according to the
Schrödinger equation ψ̇(t) = H(t)ψ(t). We denote by U (t) the corresponding evolution operator.

Let us suppose that a state ψ̂ evolves along a loop, i.e. that ψ̂(T ) = ψ̂(0). Since ψ(t) = U (t)ψ(0) is a lift of
the curve ψ̂(t), then ψ(T ) = eiθψ(0), with θ ∈ [0, 2π ], where eiθ is the phase acquired by ψ(0) along ψ(t). This
phase is not detectable by experiments on the state ψ̂ alone, but it is measurable by interference experiments in which
superpositions of ψ̂ with another fiducial state are observed [10,31]. Let ℘(t) be the orthogonal projection on ψ̂(t).
Since ℘ is a loop of monodimensional projections we are in the case of Example 2, so that ψ(T ) = eiα(T )eiϕψ(0)
where eiϕ

= Hol(A, ℘,ψ0) is the geometric phase and the first term (or, more appropriately, α(T )) is often called the
dynamic phase. As U (1) is Abelian, the geometric phase does not depend on the starting point ψ0. This factorization
of the phase was firstly pointed out by Berry [3]; the geometric phase is referred to as Berry’s phase.

Things go in a different way when E ∈ GrK (H) with dim(K ) > 1 is considered. The subspace E can be identified
with the corresponding subset of states Ê := {ψ̂, ψ ∈ S(E)}. The elements of St(K ,H) do not have a direct physical
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meaning. Let U (t) be the evolution operator for a Hamiltonian H . The curve E(t) = U (t).E in GrK (H) describes the
evolution of the corresponding set of states Ê(t). This gives a physical meaning to the fact that a curve ℘ of projection
operators is an invariant for H . Of course, E(T ) = E does not mean that every state in Ê undergoes a cyclic evolution:
one has just ψ̂(T ) = Û (T )ψ ∈ Ê for every ψ ∈ E ; therefore the restriction of U (T ) to E is a physically detectable
transformation. If an element u0 ∈ St(K ,H) over E is chosen, the restriction of U (T ) to E is related with the phase Φ
acquired by u0 along u(t) = U (t)u0. Eq. (5.1) gives Φ = uĎ

0U (T )u0, so that the phase is simply the representation in
U (K ) of the restriction of U (T ) to E by means of the embedding u0. Of course, if u0 is changed, the phase changes
by conjugation. Assuming that K is a subspace of H and using the notation in Proposition 10, we have

Φ = uĎ
0U (T )u0 = uĎ

0V (T )UI (T )u0 = Hol(A, ℘, u0)u
Ď
0UI (T )u0,

where uĎ
0UI (T )u0 is the non-Abelian analogous of the dynamic phase.

The problem arises to find a reasonable protocol to implement a general transformation in E by varying
Hamiltonians and loops. By taking every loop ℘ with base point P in PK (H) and choosing H℘ as Hamiltonian,
one obtains every element of the holonomy group. It is well known that, if dim(H) is finite, the holonomy group
is the entire group U (K ), so that every unitary transformation in E can, in principle, be implemented in this way.
However, many different loops give the same holonomy, so it is expected and desirable to obtain the entire holonomy
group considering only a selected family of loops. We call a geodesic arc in PK (H) the restriction of a geodesic to a
compact interval. In the following section we investigate the consistence of the holonomies generated by these special
loops.

A standard example of a physical system in which Berry’s phases arise is a spin 1
2 particle in a magnetic field,

usually assumed time-dependent. Suppose instead that H = iµ2 Bσz , where µ is the dielectric constant, B is the
constant intensity of the magnetic field and σz is an operator in a 2-dimensional Hilbert space, which is represented

by the Pauli matrix
(

1 0
0 −1

)
in an ordered pair (ξ+, ξ−) of orthonormalized vectors. Consider the unit vector

ψ(t) = (cos θ)ξ+ + (e−iωt sin θ)ξ−, with ω = µB and θ ∈ R. The closed curve ℘, where ℘(t) is the projection
on ψ̂(t) and t ∈ [0, 2π

ω
], is an invariant of H for every θ , but H is geometric for ℘ only if θ = ±

π
4 (mod π). In

these cases the Hamiltonian is off-diagonal with respect to the initial projections, the projections on the orthogonal
subspaces spanned by ψ± =

1
√

2
(ξ+ ± ξ−), respectively. Then ℘ is a closed geodesic, the phase is geometric and is

simply −1. If the initial state is chosen in an energy level of H , the invariant ℘ is constant; for general values of θ , a
dynamic phase is added to the geometric phase.

The dynamical implementation of a geodesic arc in PK (H) with a constant Hamiltonian H requires us to choose
an initial projection P such that H is P-off-diagonal. This means that the chosen initial states, the states in Ê
with E = Im P , cannot be in a definite energy level. In applications of non-Abelian geometric phases in quantum
computation the eigenstates of the lowest energy level are still considered as initial states, but the geometric phases
are just obtained in the adiabatic approximation [37]. Here we studied how to generate geometric phases by means of
a Hamiltonian system without approximations. This can be interesting also in applications since, as stressed in [38],
the adiabatic approach can have many disadvantages in physical implementations, due to the long evolution time
necessary for an adiabatic process.

6. Holonomies arising from geodesic loops

In this section we shall study the holonomies of the connection A w.r.t. geodesic loops, i.e. loops consisting of
geodesic arcs. Throughout this section we shall assume that K is a non-trivial closed subspace of H and P is the
orthogonal projection on K .

Lemma 3. Let W ∈ p, z = W |K and A = −iW . Then eW
= cos A + i sin A with

cos A = (cos |z|)P + (cos |zĎ|)P⊥

and

sin A = i
∞∑

n=0

(−1)n

(2n + 1)!

(
−z|z|2n P + zĎ|zĎ|2n P⊥

)
.
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If z is invertible, then

(sin A)|K = −iz|z|−1 sin |z| and (sin A|)K ⊥
= izĎ|zĎ|−1 sin |zĎ|.

Proof. By A = −iz P + izĎP⊥ we get A2
= |A|

2
= |z|2 P + |zĎ|2 P⊥ so that A2n

= |z|2n P + |zĎ|2n P⊥ and
A2n+1

= −iz|z|2n P + izĎ|zĎ|2n P⊥. The formulae follow immediately. �

We recall that, if W is compact, then also z and zĎ are compact. There exist orthonormal sequences {v j } j∈J ⊂ K
and {w j } j∈J ∈ K ⊥ such that

z(v) =

∑
j∈J

s j (v j |v)w j and |z|(v) =

∑
j∈J

s j (v j |v)v j for v ∈ K

and

zĎ(w) =

∑
j∈J

s j (w j |w)v j and |zĎ|(w) =

∑
j∈J

s j (w j |w)w j for w ∈ K ⊥,

where by s j we denote the singular values of z (for the spectral theory of compact operators, see e.g. [34]).

Lemma 4. Let z be a compact operator. We have (in the above notation)

(sin A)|K = −i
∑
j∈J

sin(s j )(v j |.)w j

(sin A) |K ⊥
= i

∑
j∈J

sin(s j )(w j |.)v j .

We also have

(cos A)|K = cos |z| =

∑
j∈J

cos(s j )(v j |.)v j + Π ′

and

(cos A)|K ⊥
= cos |zĎ| =

∑
j∈J

cos(s j )(w j |.)w j + Ω ′

where Π and Ω denote the projections on the closed subspaces spanned by the families {v j } j∈ j and {w j } j∈J ,
respectively, and Π ′

= lK − Π , Ω ′
= lK ⊥ − Ω .

Proof. The proof is just a standard computation. �

Which geodesic arcs are loops? For the next proposition it is worthwhile to recall that R ∈ U (K ) is called a
reflection of K if R = RĎ. Equivalently, there exist Π and Π ′, orthogonal projections in K , such that Π + Π ′

= 1K
and that R = Π − Π ′.

Proposition 12. Let K , P, p, W , A and z be as in Lemma 3. The following statements hold:
1. the geodesic ℘(t) = eW t Pe−W t is closed if and only if the spectrum of |z| consists of finitely many eigenvalues

{λ1, . . . , λr } and the eigenvalues have rational ratios;
2. if a geodesic arc ℘ is a loop at P and u0 ∈ St(K ,H) is over P, the relative holonomy Hol(A, ℘, u0) is a

reflection R = Π − Π ′ of K with Rank(Π ′) ≤ dim(K ⊥);
3. for every reflection R = Π −Π ′ of K with Rank(Π ′) ≤ dim(K ⊥) and u0 over P there exists a closed geodesic

arc ℘ such that R is the relative holonomy Hol(A, ℘, u0).

Proof. 1. As in Lemma 3 we put etW
= cos(t A)+ i sin(t A). Therefore ℘ is closed if and only if a τ ∈ R exists which

satisfies

sin(τ A)v = 0 ∀v ∈ K .

Suppose that z is invertible. By the identity

sin(t A)v = −iz|z|−1 sin(t |z|) ∀t ∈ R,∀v ∈ K
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we are reduced to find τ such that

sin(τ |z|) = 0. (6.1)

Let us denote by σ the spectrum of |z| and by µ its projection-valued spectral measure. Then sin(|z|τ) = 0 if and
only if µ(∪k∈Z{λ ∈ σ, λτ = kπ}) = µ(σ) = lK . As ∪k∈Z{λ ∈ σ, λt = kπ} is at most countable for any t and
µ{λ} = 0 if λ is a point of the continuous spectrum, Eq. (6.1) is satisfied if and only if |z| has at most countably many
eigenvalues and a complete set of eigenvectors. Moreover, only the case of finitely many eigenvalues is allowed. Let
{λl} be an infinite set of distinct eigenvalues of |z| and suppose that there exists τ such that the equations λlτ = klπ

admit integer solutions kl for every l; then, without loss of generality, {kl} is a sequence of distinct integers such that
|kl | → +∞. As z is bounded, we have a contradiction. Let now {λ1, . . . , λr } be the eigenvalues of |z|. It is well
known that one can find τ satisfying λlτ = klπ for every l = 1, . . . , r if and only if the eigenvalues have rational
ratios.

The case of ker |z| 6= {0} can be reduced to the previous one since, by Lemma 3, the equation sin(t A)v = 0 (for
every t) is trivially satisfied for v ∈ ker|z|.

2. Let now τ be a solution of Eq. (6.1)) and let uK denote the canonical inclusion of K in H. Then Hol(A, ℘, uK ) is
simply given by cos(τ |z|). Let {e j } j∈J be a complete set of eigenvectors of |z| such that |z|e j = λe j e j for every j ∈ J .

Then cos(τ |z|)e j = cos(τλe j )e j = (−1)ke j e j if τλe j = ke jπ . Thus cos(τ |z|) is a reflection of K . Let u0 ∈ St(K ,H)

be any isometric embedding over P . Then Hol(A, ℘, u0) is given by uĎ
0 cos(τ |z|)u0 and it is again a reflection.

To prove the last point, we have only to examine the case when dim(K ⊥) = r is finite. Then Rank(z) =

Rank(|z|) = d ≤ r . We can write |z| =
∑d

j=1 s j (e j |v)e j where {e j } is a suitable complete orthonormal system
in K and the scalars s j are strictly positive. Then

(cos z) v =

d∑
j=1

cos s j (e j |v)e j +

∑
j>d

(e j |v)e j ∀v ∈ K .

To get cos z = Π − Π ′ it is necessary that Rank(Π ′) ≤ d ≤ r .
3. Assume Rank(Π ′) ≤ dim(K ⊥) and R = Π − Π ′. We prove that there exists z ∈ L(K , K ⊥) such that

cos |z| = R. Let {e j } j∈J be an orthonormal system in K such that the closed subspace spanned by {e j } j∈J agrees
with Im Π ′ and let {w j } j∈J be an orthonormal system in K ⊥. We define, for v ∈ K

z(v) :=

∑
j∈J

π(e j |v)w j .

Since zĎz = π2Π ′, we get |z| = πΠ ′ and cos |z| = R, as required. �

Let us consider the loops based at P which are products of closed geodesic arcs. Their holonomies form the group
generated by the reflections of K with the property in point 2 of Proposition 12. This group does not depend on the
u0 ∈ St(K ,H) which has been chosen. In particular, if dim(K ) ≤ dim(K ⊥), we obtain the group generated by all
reflections of K . If dim(K ) is finite one can easily see that this is a proper subgroup of U (K ) since its elements have
real determinant.

More generally, we call (piecewise) geodesic loop any loop in PK (H) which is the product of geodesic arcs. For
u0 ∈ St(K ,H) over P , we are interested in the group of the holonomies at u0 which are generated by geodesic loops
based on P . We call this group the geodesic holonomy group at u0 and denote it by Holgeod(A, u0).

Proposition 13. Let W1 = iA1 and W2 = iA2 belong to p with W1|K = z1 and W2|K = z2 and consider the
geodesic arcs ℘1(t) = etW1 Pe−tW1 for 0 ≤ t ≤ t1 and ℘2(t) = e−tW2 PetW2 for 0 ≤ t ≤ t2. The following conditions
are equivalent:

1. ℘1(t1) = ℘2(t2);
2. (sin(t2 A2) cos(t1 A1)+ cos(t2 A2) sin(t1 A1)) |K = 0.

3.
∑

∞

n=0
(−1)n

(2n+1)!

(
t2n+1
2 z2|z2|

2n cos |t1z1| + t2n+1
1 cos(t2|z

Ď
2|)z1|z1|

2n
)

= 0.

4. In the particular case that |z1| and |z2| are invertible the above condition 3 becomes

z2|z2|
−1 sin(t2|z2|) cos(t1|z1|)+ cos(t2|z

Ď
2|)z1|z1|

−1 sin |t1z1| = 0.
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If one of these conditions is satisfied, then ℘−1
2 ◦ ℘1 is a geodesic loop and

Hol(℘−1
2 ◦ ℘1,A, uK ) = (cos(t2 A2) cos(t1 A1)− sin(t2 A2) sin(t1 A1)) |K

where uK denotes the canonical inclusion of K in H.

Proof. 1 ⇐⇒ 2. Condition 1 is satisfied if and only if et2W2 et1W1 Pe−t1W1e−t2W2 = P . The product et2W2et1W1 is given
by

(cos(t2 A2) cos(t1 A1)− sin(t2 A2) sin(t1 A1))+ i (sin(t2 A2) cos(t1 A1)+ cos(t2 A2) sin(t1 A1))

where the first term is P-diagonal and the second one is P-off-diagonal. Therefore et2W2et1W1 preserves K if and only
if (sin(t2 A2) cos(t1 A1)+ cos(t2 A2) sin(t1 A1)) |K = 0.

2 ⇐⇒ 3. Using Lemma 3, condition 2 can be written

∞∑
n=0

(−1)n

(2n + 1)!

(
t2n+1
2 z2|z2|

2n cos(t1|z1|)+ t2n+1
1 cos(t2|z

Ď
2|)z1|z1|

2n
)

= 0.

4. This statement follows immediately by Lemma 3.
For the last statement we observe that the final point of the horizontal lift of ℘−1

2 ◦ ℘1 is given by

et2W2et1W1uK = et2W2et1W1 |K = uK et2W2 et1W1 |K

since uK is the canonical inclusion. �

Proposition 14. Let K be a subspace with 1 ≤ dim(K ) ≤ dim(K ⊥). Then every S ∈ U (K ) is the holonomy of a loop
at P composed by two geodesic arcs.

Proof. Let S ∈ U (K ) and choose z1 ∈ L(K , K ⊥) with |z1| = 1K and z2 = z1SĎ. Thus |z2| = S|z1|SĎ
= 1K

and |zĎ2| = |zĎ1| = Ω where Ω denotes the projection on the range of z1. Let W1 and W2 be in p such that
W1|K = z1 and W2|K = z2 and consider the curves ℘1 and ℘2 as in Proposition 13 with t1 =

π
2 and t2 =

3
2π .

Since cos(t1|z1|) = 0 and cos(t2|z
Ď
2|) = Ω ′

:= 1K ⊥ − Ω , point 4 of Proposition 13 assures that the curve ℘−1
2 ℘1 is a

loop. Since cos(t1 A1)|K = cos(t1|z1|) = 0, the holonomy of this loop is − sin(t2 A2) sin(t1 A1)|K and equals

−(sin t1)z
Ď
2

(
∞∑

n=0

(−1)n

(2n + 1)!
t2n+1
2 Ω2nz1

)
= −(sin t1)(sin t2)z

Ď
2z1 = zĎ2z1 = S

as required. �

Lemma 5. Assume 1 ≤ dim(K ⊥) < dim(K ) and let T ∈ u(K ) be a finite rank operator. Then S := eT belongs to
the geodesic holonomy group Holgeod(A, uK ).

Proof. We denote by r the finite dimension of K ⊥. Using the spectral decomposition of T we can factorize
S =

∏n
i=1 Si where Si = eTi with Ti ∈ u(K ) with rank(Ti ) ≤ r . Hence it is not restrictive to assume that

rank(T ) ≤ r . We choose an orthonormal basis {w j } j=1,...,r in K ⊥ and an orthonormal family {v j } j=1,...,r in K and
define z1 ∈ L(K , K ⊥) by z1 =

∑r
j=1(v j |.)w j . Then |z1| = Π , where Π is the orthogonal projection on Span{v j } and

|zĎ1| = 1K ⊥ . One can arrange the family {v j } j=1,...,r so that Π S = SΠ and SΠ ′
= Π ′. Let z2 = z1SĎ, hence |z2| = Π

and |zĎ2| = 1K ⊥ . Consider now ℘1 and ℘2 as in Proposition 13, with W1|K = z1 and W2|K = z2, t1 = π/2 and

t2 =
3
2π . Then condition 2 in Proposition 13 is verified. Actually, cos(t2 A2)w = cos |t2zĎ2|w = cos( 3

2π1K ⊥)w = 0
for every w ∈ K ⊥ and sin(t2 A2) cos(t1 A1)v = sin(t2 A2)Π ′v = i

∑r
j=1(Sv j |Π ′v)w j = 0 for every v ∈ K .

Let us calculate the holonomy relative to the loop℘−1
2 ◦℘1, by applying the formula in Proposition 13. By Lemma 4,

we have cos(t2 A2) cos(t1 A1)v = Π ′v, for v ∈ K . Moreover, from

sin(t1 A1)v = −i
r∑

j=1

sin(t1)(v j |v)w j = −i
r∑

j=1

(v j |v)w j
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and from

sin(t2 A2)w = i
r∑

j=1

sin(t2)(w j |w)Sv j

we get sin(t2 A2) sin(t1 A1)v = −SΠ v for every v ∈ K . We conclude that

Hol(℘−1
2 ◦ ℘1,A, uK )v = Π ′v + SΠ v = Sv

as required. �

We obtain immediately the following proposition.

Proposition 15. Assume dim(H) finite or dim(K ) ≤ dim(K ⊥). Then

Holgeod(A, u0) = Hol(A, u0) = U (K )

for every u0 ∈ St(K ,H).

We want to investigate the geodesic holonomy group of the connection A in the remaining case where dim(K )
is infinite and dim(K ⊥) is finite. We recall that U (H) is contractible whenever dim(H) is infinite [16]. This implies
that PK (H) ' U (H)/UK (H) is simply connected, so that the holonomy group is connected and agrees with the
restricted holonomy group. In the theory of Banach Lie principal bundles however, also the restricted holonomy
group can fail to be a Lie subgroup in our strong sense. In the next proposition we prove that the holonomy group,
in the case under consideration, is a subgroup of U∞(H), a Banach Lie group which is a closed subgroup of U (H)
but not a Lie subgroup. Let us denote by L∞(H) the closed ideal of the C∗-algebra L(H) consisting of the compact
operators. By U∞(H) we denote the unitary Fredholm group, i.e. the group of the unitary operators U of the form
U = 1H + X with X ∈ L∞(H). It is well known that U∞(H) is a Banach Lie group whose Banach Lie algebra is
u∞(H) := {X ∈ L∞(H) : XĎ

= −X}. We stress that u∞(H) is not a splitting subalgebra of u(H) so that U∞(H) is
not a Lie subgroup of U (H). The exponential map exp : u∞(H) → U∞(H) is onto, hence U∞(H) is connected. For
details, see [13].

Proposition 16. Assume that K is an infinite dimensional non-trivial subspace of H and that K ⊥ is finite dimensional.
Then

Hol(A, u0) ⊂ U∞(K )

for u0 ∈ St(K ,H) over P.

Proof. Let ℘ be a loop with base point P . Using the small lassos technique (see Appendix 7 in [15]) one can represent
℘ as a product of loops of the form µ−1

◦`◦µ where ` is a loop which lies completely in a chart and µ is a path which
joins the base point P with the base point, say P`, of the loop `. By PtA(µ−1

◦ ` ◦ µ)(u0) = u0Hol(µ−1
◦ ` ◦ µ) we

get

Hol(A, µ−1
◦ ` ◦ µ, u0) = Hol(A, `,PtA(µ)(u0)).

We have only to prove that holonomies relative to loops which lie completely in a chart belong to U∞(K ). Let now
UP and βP be as in Lemma 2 and let ℘ : [0, 1] → PK (H) be a loop at P contained in UP . Set z(t) := βP (℘ (t)), so
that z(0) = z(1) = 0. For every u0 ∈ St(K ,H) over P , the curve v̂(t) := u0 + z(t)u0 is a lift of ℘ in Emb(K ,H),
so that v(t) := v̂(t)|v̂(t)|−1 is a lift of ℘ in St(K ,H) starting and ending in u0. A simple computation shows that
rank(v̇(t)) ≤ r for every t , r = dim(K ⊥). Therefore also the rank of A(v̇(t)) = vĎ(t)v̇(t) is not greater than r .

The horizontal lift of ℘ is u(t) = v(t)S(t) where S(t) is a C1 curve in U (K ) which satisfies the equation

Ṡ(t)SĎ(t) = −A(v̇(t)), S(0) = 1K .

Since A(v̇(t)) ∈ u∞(H), the solution S(t) of the above equation belongs to U∞(K ) for every t . Finally, we have only
to recall that Hol(A, ℘, u0) = S(1). �
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From Lemma 5 and Proposition 16 we obtain that, if dim(K ) is infinite and dim(K )⊥ is finite, the following
inclusions hold:

Holgeod(A, uK ) ⊂ Hol(A, uK ) ⊂ U∞(K ),

with Holgeod(A, uK ) = U∞(K ).
Thus we can conclude that the geodesic holonomy group agrees with U (K ) if K is finite dimensional or if

dim(K ) ≤ dim(K ⊥) and we obtain that the holonomy group is U (K ), extending a well known result. Actually,
in the case where H is finite dimensional, one can prove that the holonomy group agrees with U (K ) by using the
Ambrose Singer theorem, a theorem which is difficult to extend to infinite dimensions (compare, e.g., [20] and [33]).
However, in the case where K is finite dimensional and H is infinite dimensional one can prove that the holonomy
group is U (K ) by using an extended version of the Ambrose Singer theorem (see [12]).

In the remaining critical case, where K ⊥ is finite dimensional and K is infinite dimensional, we proved that the
holonomy group is contained in the unitary Fredholm group U∞(K ). However, using the holonomies relative to
geodesic loops, one can approximate a generic operator in U∞(K ).
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Appendix

Distances for topology on projections and subspaces. Consider the projective space P(H) = GrC(H). As is well
known, the projective space has a canonical structure of Kähler manifold. The geodesical properties of P(H) are quite
simple, see e.g. [7]. We recall that P(H) consists of the 1-dimensional subspaces ê (called rays) spanned by all e ∈ H
with ‖e‖ = 1. The geodesic joining two different rays ê and f̂ belongs to the projective space of the 2-dimensional
subspace spanned by e and f . Since this projective space is isometrically isomorphic to the unit sphere S2 equipped
with the riemannian metric induced by the euclidean metric on IR3, geodesics describe great circles and, therefore,
the Kähler distance d(ê, f̂ ) is defined as the length of the great circle arc joining ê and f̂ [7]. An easy computation
shows that

|(e| f )| = cos(
1
2

d(ê, f̂ )). (A.1)

Each non-zero subspace E of H is canonically identified with the closed subset Ê of P(H) of all rays ê with e ∈ E .
So we can consider the Hausdorff distance between Ê and F̂ for non-zero subspaces E and F . We define

dist(ê, F̂) := inf{d(ê, f̂ ) | f̂ ∈ F̂} and D0(Ê, F̂) := sup
ê∈Ê

dist(ê, F̂)

and the distance D on Gr(H) by

D(E, F) := max{D0(Ê, F̂),D0(F̂, Ê)}.

There are many geometric invariants related to incidence properties of subspaces. A careful discussion of these
invariants for subspaces of Banach spaces can be found in [25]. Here we restrict our attention to Hilbert spaces.
The problem arises to characterize the incidence properties of subspaces in terms of the distance D and of the norm
distance between the associated orthogonal projections. Other distances on projections are discussed in [4,27].

Let H be a complex Hilbert space. For x ∈ H and for a closed non-empty subset Γ of H, we denote

dist(x,Γ ) := inf{‖v − x‖ v ∈ Γ }.

For a subspace E one has dist(x, E) = ‖P⊥x‖, with P the projection operator on E . We set

S(E) := {e ∈ E | ‖e‖ = 1} and B(E) := {b ∈ E | ‖b‖ ≤ 1}.
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Lemma 6. Let E be a non-zero subspace of H and let P denote the orthogonal projection on E. For every x ∈ H,

‖Px‖ = sup
e∈S(E)

|(e|x)| = sup
b∈B(E)

|(b, x)|.

Proof. Let e ∈ S(E) and let p be the 1-dimensional projection operator on the 1-dimensional subspace generated by
e. By P ≥ p one gets ‖Px‖

2
≥ ‖px‖

2
= |(e|x)|2, so that

sup
e∈S(E)

|(e|x)| ≤ ‖Px‖ ≤ sup
b∈B(E)

|(b|x)|.

For every b ∈ B(E) with 0 < ‖b‖ = β, consider e := β−1b. Then e ∈ S(E) with

|(e|x)| = β−1
|(b|x)| ≥ |(b|x)|.

This implies our statement. �

By Lemma 6 we obtain that

dist(x, E) = ‖P⊥x‖ = sup
e∈S(E⊥)

|(e|x)| = sup
b∈B(E⊥)

|(b|x)|.

Let E and F be non-zero subspaces of H and define

Θ0(E, F) := sup
e∈S(E)

dist(e, F).

The quantity

Θ(E, F) := max{Θ0(E, F),Θ0(F, E)}

is called the opening (or aperture) between E and F [34].

Lemma 7. Let E and F be non-zero subspaces of H. Then

Θ0(E, F) = sin
(

1
2

D0(Ê, F̂)

)
.

Proof. For e ∈ S(E) we have

dist2(e, F) = 1 − ‖Qe‖2
= 1 − sup

u∈S(F)
|(u|e)|2 = inf

u∈S(F)
(1 − |(u|e)|2)

so that, by formula (A.1), can be found

dist(e, F) = inf
u∈S(F)

sin
1
2

d(ê, û) = sin
1
2

dist(ê, F̂).

Therefore

Θ0(E, F) = sup
e∈S(E)

dist(e, F) = sup
e∈S(E)

sin
1
2

dist(ê, F̂) = sin
1
2

D0(Ê, F̂). �

Lemma 8. Let P and Q be orthogonal projections in H. Then

‖P − Q‖
2

= max{‖(P − Q)2 P‖, ‖(P − Q)2 P⊥
‖.

Proof. We denote max{‖(P − Q)2 P‖, ‖(P − Q)2 P⊥
‖} by M . The norm properties give

‖(P − Q)2 R‖ ≤ ‖(P − Q)2‖ = ‖P − Q‖
2

(where R denotes P or P⊥) so that M ≤ ‖P − Q‖
2. Conversely, for x ∈ S(H) we have

(x |(P − Q)2x) = (Px |(P − Q)2 Px)+ (P⊥x |(P − Q)2 P⊥x)

≤ ‖(P − Q)2 P‖‖Px‖
2
+ ‖(P − Q)2 P⊥

‖‖P⊥x‖
2

≤ M
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so that

‖P − Q‖
2

= ‖(P − Q)2‖ = sup
x∈S(H)

(x |(P − Q)2x) ≤ M. �

We look now for a relation between the opening Θ(E, F) and the spectrum of P Q P . The spectrum of an operator
A will be denoted by σA.

Lemma 9. Let E and F be non-zero subspaces of H and let P and Q denote the orthogonal projections on E and
F, respectively. The following statements hold.

1. (P − Q)2 P = P(P − Q)2 = P Q⊥ P.
2. ‖P Q⊥ P‖ = ‖P Q⊥

|E‖ = 1 − inf σP Q|E .
3. ‖(P − Q)2 P‖ = ‖P Q⊥ P‖ = Θ2

0 (E, F).

Proof. 1. It is trivial.
2. We have ‖(P − Q)2 P‖ = ‖P Q⊥ P‖ ≥ ‖P Q⊥

|E‖ = sup σP Q⊥|E = 1 − inf σP Q|E . To prove the converse
relation, recall that

‖P Q⊥ P‖ = sup
x∈S(H)

(x |P Q⊥ Px).

Assume that 0 < ‖Px‖ = β < 1 and define e := β−1 Px . Then e ∈ S(E) and

(e|P Q⊥e) = (e|Q⊥e) = β−2(x |P Q⊥ Px) ≥ (x |P Q⊥ Px).

This implies ‖P Q⊥
|E‖ ≥ ‖P Q⊥ P‖, as required.

3. It follows by

Θ2
0 (E, F) = sup

e∈S(E)
‖Q⊥e‖2

= sup
e∈S(E)

(e|P Q Pe) = ‖P Q⊥ P‖. �

We obtain immediately the following proposition.

Proposition 17. Let E and F be non-zero subspaces of H and let P and Q denote the orthogonal projections on E
and F, respectively. Then

‖P − Q‖ = Θ(E, F) = sin
(

1
2

D(E, F)

)
.

By the above proposition the natural map P : Gr(H) → P(H), E 7→ PE is a homeomorphism. In particular, it
restricts to a homeomorphism of GrK (H) with PK (H). Other proofs of the first equality can be found in the literature,
see e.g. [1].

Proposition 18. Let E and F be non-zero subspaces of H and let P and Q denote the orthogonal projections on
E and F, respectively. Denote by Q|E and P|F the restrictions of Q to E and P to F, respectively. The following
conditions are equivalent:

1. D(E, F) < π;
2. ‖P − Q‖ < 1;
3. inf σP Q|E > 0 and inf σP⊥ Q⊥|E⊥ > 0;
4. infe∈S(E) ‖Qe‖ > 0 and infu∈S(F) ‖Pu‖ > 0;
5. Q|E : E → F is a bijection;
6. P|F : F → E is a bijection;
7. P Q|E ∈ GL(E) and Q P|F ∈ GL(F);
8. there exists a (unique) z ∈ L(E, E⊥) such that F = graph(z).

If dim(E) = dim(F) < ∞ these conditions are equivalent to P Q|E ∈ GL(E).
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Proof. Conditions 1 and 2 are equivalent by Proposition 17. Moreover 2 and 3 are equivalent by Proposition 17, by
the above lemmas and by the definition of Θ(E, F).

2 ⇐⇒ 4. Actually, the inequality infe∈S(E) ‖Qe‖ > 0 is equivalent to Θ0(E, F) < 1. Analogously for the other
inequality.

Conditions 4, 5 and 6 are equivalent. The inequality infe∈S(E) ‖Qe‖ > 0 implies that the bounded operator Q|E is
invertible, with bounded and closed inverse. Therefore its range is closed. The second inequality implies the analogous
statement for P/F . By (Q|E)Ď = P|F we obtain that Q|E is surjective so that the equivalence of 4, 5 and 6 follows.

6 ⇒ 7. By P Q|E = (Q|E)ĎQ|E and by the equivalence of 5 and 6 we get P Q|E ∈ GL(E). Analogously for
Q P|F .

7 ⇒ 4. Since P Q|E = (Q|E)ĎQ|E , its numerical range is strictly positive, i.e. there exists µ > 0 such that
(e|P Qe) > µ2 for every e ∈ S(E) or, equivalently,

inf
e∈S(E)

‖Qe‖ > µ.

Analogously, Q P|F ∈ GL(F) implies infu∈S(F) ‖Pu‖ > 0.
6 ⇒ 8. Set z := P⊥(P|F)−1. Then graph(z) = F . Actually, we can write each f ∈ F as f = x + P⊥(P|F)−1x

with x = P f . Thus, F ⊂ graph(z). Conversely, every x ∈ E can be written as x = P f with f ∈ F , so that
x + zx = f . Thus, graph(z) ⊂ F .

8 ⇒ 6. By F = graph(z) and P(x + zx) = x for every x ∈ E , we get that P : F → E is a bijection.
If dim(E) = dim(F) < ∞, then one gets condition 6 simply by requiring that P Q|E is injective. Actually, this

condition implies that Q|E is into and hence also onto F . �

Corollary 2. The map βE : UE → L(E, E⊥), given by βE (F) = P⊥(P|F)−1 is a homeomorphism and its inverse
is the map αE : L(E, E⊥) → UE , αE (z) = graph(z).
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